Rubber & Tyre Machinery World

Info on Equipment And Suppliers


2 Comments

9 Things About Tandem Technology Your Boss Wants To Know In Rubber Mixing

Dr Julius Peter, then Chief Technical Officer at Continental AG patented his idea of Tandem Mixing Technology in 1989. His colleague, G. Weckerle, manager at Continental Technical Rubber promoted this technology at his factory in Northeim, Germany on K2A, K4, K5 and K7 type of mixers.

Francis Shaw & Co had sole world rights for supply of the intermeshing type tandem mixers. Today, HF Mixing Group (Harburg-Freudenberger Maschinenbau GmbH) are owners of tandem mixing technology by virtue of their acquisitions in the rubber machinery world.

(Updated on 23rd Dec 2015: Flip through this post in our digital edition and download here)

Here are 9 key things about tandem technology in rubber mixing you should know to impress your boss.

  1. Tandem technology separates the two main tasks in your rubber mixing process viz. dispersion and distribution. Dispersion means breaking down of your solid materials such as the fillers. Distribution involves achieving homogeneity within your rubber mix compound with its different chemicals added. The temperature profile which is absolutely essential for inducing chemical reactions during your rubber mixing process can be better controlled when these two stages are separated.
  2. In Tandem technology you interconnect two “mixers” in series, a ram type mixer on top of aramless mixer. Each machinery is optimised to perform one rubber mixing task. Ram type mixer does dispersion well whileramless tandem mixer does the task of distribution.

    HF Tandem Mixer

    HF Tandem Mixer

  3. Your masterbatch produced in the primary ram mixer is transferred without intermediate storage to the ramless tandem mixer below. Here your batch is cooled and finals mixed. At the same time a new masterbatch is prepared in ram mixer above. The upper mixer with ram is preferably (but not necessarily) intermeshing type. As your masterbatch mixing does not involve the addition of curatives or accelerators and is essentially a heating operation, the mixing cycle may be carried out rapidly without any need to cool your mixer before the next mixing cycle.
  4. Between the two mixers is a discharge flap and chute which would be closed at all times except when the lower tandem mixer receives the masterbatch dump from above.
  5. The mixer below must be intermeshing type to enable self-feed without pressure and work without a top ram. The finals rubber mixing function is usually a shorter process than the masterbatch stage. This means that the tandem mixer has an idle time after the discharge and before receiving the next hot masterbatch. This idle period with the discharge door open allows the tandem mixer to cool.
  6. The final mix compound is then dumped into a two-roll mill or a dump extruder and processed in the normal way.
  7. When the two tasks of dispersion and distribution are separated, your compound weight is relatively smaller in the larger lower machine. Hence, you can operate this ramless mixer at a higher speed. This improves the quality of your mix because your compound is moved around the mixing chamber more number of times.
  8. Excellent cooling water circulation to the mixers is a must in tandem mixing technology.
  9. HF Mixing Group expert, Dr Harald Keuter, emphasize that a Tandem mixer improves your throughput rate by up to 25 per cent when compounding with carbon black compounds and can rise up to 100 per cent with silica compounds. Hence you can cut costs and increase output with this technology. Depending on your choice of mixing line, say for a mixing room with five tandem mixing lines and production of approx. 100,000 tonnes of rubber compound annually, he says you save up to one million euros per year. (….And that’s lot of money!!)

The population of tandem mixers is higher in the tire industry while its economy of operations is tempting the non-tire rubber industry as well.

Do you plan to reduce the mixing stages for your rubber compound (Read on Single-Stage or Two-Stage Mixing here) using tandem technology? Let us know.


If you liked this article, please do not forget to share with your colleagues and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


10 Comments

Single-Stage or Two-Stage Mixing?

Have you encountered the often dilemma, “Should I do single-stage or two-stage mixing for my compound; which machinery to use?” – do not be surprised! You are not alone.

Single-stage mixing is considered for productivity reasons (and cost-effectiveness). While Two-stage mixing gives a better dispersion of the finer size blacks. And interestingly, for some compounds with high levels of blacks, even three or more mixing-passes may be necessary.

Rubber mixing as a subject would have been quite simpler, if we could answer this topic effortlessly. Unfortunately, it is not!

(Updated on 23rd Dec 2015: Flip through this post in our digital edition and download here)

Single-stage mixing in an internal mixer is a cost-effective solution but difficult for all compounds. If the compounds have high filler loadings, you may be forced to mix in two-stages due to the high amount of shear and heat generated in the mixing cycle. If you use peroxide cures or are mixing expensive FKM, then you must be even more worried of the batch temperature.

Most experts feel two-stage mixing, with short time spans for each of the mixing stages, is helpful.

One school of thought advocate an open two-roll mill for second-stage mixing because the dispersion of the batch and the mastication is higher (than an internal mixer). Open mills, though slower, are safe for short scorch compounds.

A traditional mixing line comprises of an internal mixer above a dump mill then one (or two) mill before the batch off cooling line.

Traditional Mixing Line with Two-Roll Mill Set-up

Reference Image Courtesy: Bainite Machines

Internal mixers are high-capacity rubber compounding machinery. Hence they need to be supported by open mills with advanced features to keep pace with production. The rotors of these mixers operate at high-speed to maximise dispersion of the bulk ingredients and dump the batch at high temperatures. Curatives, blowing agents, etc are added on the open mill and final homogenization happens on the last mill before batch off. Also, adding the cure system on downstream mill eliminates the batch contamination problem from “leftover’s” trapped (between the rotor end plates and ends of the rotors) in the internal mixer. These open mills are recommended to have peripherally drilled rolls to take out heat of the compound before adding heat sensitive curatives.

Open mill mixing is operator dependent and hence quality of compound varies from beginning of shift to end of shift. (Read about Stock Blender). As compared to rubber mixing in a closed environment, the probability of “fly loss” is high in open mills. Hence, an alternate school of thought propagates second-stage mixing also performed in an internal mixer. This can be at a lower speed, energy and dump-temperature configuration setting on mixer.

Single-stage mixing in an internal mixer is possible, when you mix and drop the batch within 120⁰C. The present range of internal mixers have advanced designs to effectively control batch temperature. With many designs and rotor geometries for faster mixing, accompanied by quicker cooling features, mixers like tandem mixers allow traditional two pass to be reduced to single pass cycle. (I will cover newer mixing lines with Twin Screw Sheeter, Dump Extruder, etc in different posts). As a side note, if you opt for single-stage mixing with internal mixer; the Intermeshing Type Mixer has the best quality and efficiency.

Single-stage mixing is not always cheaper and two-stage mixing is not always better. The best way to decide is to make a cost-benefit analysis between the two processes for the different polymers that you work with. Quantify how much of your product defects are linked to poor dispersion. Analyzing them, you have your customized solution to mix effectively.

Summarizing, there is no one best way for all compounds. Your mixing process has to be designed to the polymer; depends on the viscosity of the elastomers used, the quantity of filler, mixing temperature, machinery employed, time at every stage of mixing and desired physical properties for the end use product. If you get your “desired” characteristics in a single-stage mixing, adopt it or wisely opt for two-stage mixing.


If you liked this article, please do not forget to share with your colleagues and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.