Rubber & Tyre Machinery World

Info on Equipment And Suppliers


6 Comments

Why We Love Twin Screw Sheeter (And You Should, Too!)

Twin Screw Sheeter replaces the dump-mill and sheeting mill combination in a traditional rubber mixing line (an image you had seen in my earlier post – Single-Stage or Two-Stage Mixing?). This means you could visualize Twin Screw (Extruder) Sheeter, as a rubber machinery that accepts mix compound directly discharged from an internal mixer into its hopper chute and converts it into a continuous, seamless rubber sheet that is then fed into a Batch-Off Cooling Line.

For those who have been following my blog, you have already viewed a video of this equipment in action in my earlier post Rubber Mixing Room.

When you explore this equipment for purchase, you should not be surprised with different OEM’s calling it in similar sounding names. For example, you will get a Conical Twin Extruder (CTE) with Roller Head from Colmec SpATwin Screw Roller Head Extruder (TSR) from KobelcoTwin Screw Discharge Extruder (Convex™) from HF Mixing Group or simply Twin Screw Sheeter (TSS) from other rubber machinery manufacturers like Bainite Machines.

In construction, they all appear similar as shown below.

Kobelco Make TSR

Kobelco Make TSR with description

For reading simplicity, let me address this machinery simply as “TSS” for the rest of this article.

You will find the TSS to be ideal for conventional and diverse applications including tire manufacturing, custom compounding, hose & belt manufacturing and technical rubber goods production.

So, here’s why we love Twin Screw Extruder Sheeter (And, I feel, You Should, Too!).

  • Energy Saving: Rubber compounding is a energy-intensive process. So, any technological advancement that has the potential to reduce energy consumption receives my first preference (and I hope you will agree with me here). Let me help you with a quick back of the envelope calculation. If you are using a 270 Liter Tangential Internal Mixer, you are engaging at least two units of 26″x84″ two-roll mills in the downstream section. Each 26″x84″ two-roll mill, requires around 180 kW (minimum) motor power – totaling to 360 kW (=180 x 2) only for the mills. For a similar capacity mixer, a TSS downstream will not seek more than 300 kW power (again, there is energy-efficient models available here). So, this rough calculation, when a TSS replaces the traditional dump-mill with sheeting mill set up, straightaway gives you 16.7% savings in energy (60 kW less).
  • Labor: The second aspect is the reduction is labor cost. Unlike two-roll open mills (with or without ), where you will need two separate operators, a TSS can be set up to perform sheeting function of rubber sheet without an hands-on operator at its vicinity. Even if not fully automated, you do not need an operator once the discharge of rubber sheet from TSS is fed into a Batch-off.
  • Reduced Contamination: In open two-roll mixing mills, your rubber mixing is exposed to the environment and it is difficult to control any dirt or moisture absorption by the compound during milling process. In a TSS, this is eliminated. Your rubber and its recipe constituents are mixed and sheeted-out in a closed environment under temperature controlled conditions right from the time you feed it into your internal mixer. Hence, with reduced contamination, you get a guaranteed higher quality of your mix compound.
  • Self-Cleaning Feature: The Screw and Barrel of the TSS is at a downward inclination (15º) angle from the feed chute section to exit of the roller die head. This incline ensures that compound flow to the exit of the barrel is reinforced and no material remains inside the TSS – hence, the self-cleaning feature.
  • High Mixing Line Efficiency and Productivity: When you install a TSS , your compound batch from the internal mixer is converted into a continuous sheet and the working of TSS can be automatically synchronized with rubber mixing line speed. This in turn, improves the mixing line performance making it more efficient. The continuous sheeting without operator involvement increases your mixing line throughput and overall productivity. Original Equipment Manufacturers (OEM) can offer you customized TSS models beneath internal mixers with throughput capabilities from 500 Kg per hour to 21000 Kg per hour (….and that’s a vast range by all means).
  • Effective Temperature Control: Your rubber compound discharge temperatures from TSS is reduced while sheeting out the material because no additional work (hence no additional heat) is introduced into your compound. Additionally, there is circulation of tempered (or chilled) water inside the conical twin screws, barrel and the peripherally drilled rolls of the roller die. This flowing water facilitates an effective heat exchange to take away the heat from the rubber mix and reduces the compound temperature at the discharge sheeting section.
HF Twin Screw Extruder

HF Make Twin Screw Extruder

  • Compact Layout: Most manufacturers offer various drive options, making the design of the TSS very compact yet sturdy. This means that a TSS can be accommodated under most internal mixers starting from the lowest production range of 16-25 Liter capacities based on the OEM standards.
  • Easy Maintenance: Further, the screw tips of the energy-efficient conical twin-screws do not touch each other and hence there is minimized wear of the screws. A rapid action hydraulic cylinder arrangement for clamping and moving the roller-die calender on rails facilitates the cleaning of the screw tips and insides of the barrel tip during your scheduled maintenance. Also, the TSS does not require external pushers, as in case of single-screw dump extruders. These features make a TSS maintenance easy for you.
  • Additional Features: With increasing trend of Silica usage in rubber compounding, you need to be cautious of the metallurgy and surface treatment characteristics of any rubber compounding machinery you buy. Hence, explaining the major ingredients of your recipe to your OEM is of paramount importance. For example, in TSS you can seek rollers that has hard-surfaced rolls if you are processing silica compounds. This will minimize the compound sticking to the TSS roll and increase its life.

Lastly, this physically very sturdy and robust, rubber machinery is designed for intrinsically safe mixing line operation.

Summarizing, with its capabilities for conventional and diverse applications, a TSS is emerging as the standard downstream equipment in the rubber compounding process for masterbatch and final mixing lines. And that is why we love Twin Screw Sheeter.

How about you?


If you liked this article, please do share with your colleagues, customers and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


3 Comments

7 Must-Ask Questions When Buying Used Rubber Internal Mixer

An Internal Mixer, whether it is a Banbury mixer or Intermix mixer, is the heart of your rubber processing plant. The market for used rubber internal mixer is wide with sellers spread across. You can find an excellent quality pre-owned rubber mixer that can produce high-quality compound mix, without spending excessively.

Rebuild Farrel F270 Mixer From Pelmar Engineering Ltd

Rebuild Farrel Make F270 Mixer – Pelmar Engineering Ltd

Your purchase decision on used or pre-owned machinery has to be thoughtfully made. Because you will see that even in the secondary market for internal mixers, the costs are relatively high considering there could be additional rebuild costs (if not already refurbished by the rebuilder). In any case, you are making a significant investment from your affordability standards and hence you need to consider a variety of factors to help assess the mixer’s value to your rubber compounding requirements and, ultimately, to your bottom line.

Here are 7 Must-Ask Questions when buying used rubber internal mixer that will help you appraise the second-hand or rebuilt mixer value and usefulness to your rubber compounding operations.

  1. What are my mixer requirements?

You need to have a clear idea of what you wish to buy. This entails knowing capacity, the mixing process for your rubber compounding requirements, matching upstream and downstream machinery availability in your rubber mixing room and the remaining useful life of the equipment you are willing to live with.

(Read my post on the Internal Mixer Selection Questionnaire where you can also download a template. You can modify this template to clarify your needs and refine your decision process).

  1. What is my budget?

Your budget will be a crucial purchase factor including the brand, exact model and vintage of the mixer that you can buy. You should have clarity of breakup of costs associated with your batch mixer purchase.

This includes the cost of additional space required (in case you are expanding operations), cost of dismantling (if mixer is running at a particular location) and transporting the mixer to your factory, actual cost of mixer, its controls and accessories to be paid to the seller; plus various duties applicable, to name a few.

  1. Should I partner the right people – the pre-owned equipment sellers?

Given the global nature of rubber compounding business, there are internal mixers available across the key global markets. Hence, it is not possible for you to be informed about the best deals out there in terms of overall cost and mixer quality. This is where pre-owned equipment sellers or dealers come in to help you.

I think, a good dealer will be able to present you with multiple options and help you select the best used mixer for your requirement.

  1. Is the mixer I am considering to buy in Good Working Condition?

Whether buying used or rebuild mixer, you must always test them whenever feasible or you should ask for a start-up guarantee assurance. This is a precaution to be sure that the mixer is in good running order before your final purchase decision.

If you are buying a running mixer, you can easily test them on-site before dismantling. Or if you are buying from a warehouse, many of the reputed used rubber machinery dealers provide arrangements to allow you to test the mixer at least on a test-bed (if not on-site) to help you make a quick purchase decision.

Else, the last resort is a start-up guarantee assurance from the seller. Reputed used machinery dealers  will be transparent on the condition of the mixers they sell, but it is always smart that you check.

When buying with motor and controls, you should verify the operations and safety of electrical components and software licences along with its adaptability to your country of installation. (If not working properly of found unsuitable, you need to factor in the cost of its replacement into your purchase cost)

Another key aspect to check is whether the pre-owned mixer that you propose to buy comes with complete set of manuals, schematics and diagrams. (You may read my earlier post on mixer maintenance here.)

  1. Should I do Visual inspection?

Absolutely. Though the internet has made your communication easy and you can conduct a lot of your business communication online. You can even demand pictures and videos of your mixer in consideration through email. However, there is no alternative to physically inspecting the machinery you are going to purchase.

Used mixers are usually not warranted. This means you need to know the extent of rebuild or refurbishment, and get an idea of the actual state of the internal mixer.

You should insist on a test run of the mixer in your presence and keep your eyes and ears open for tell-tale signs of machine ill-health such as unusual vibrations or noise. Question the maintenance practices of the previous owner and keep your eyes open for worn out parts and leakages.

Additionally, your visual observation of the machinery empowers you to negotiate better with the seller.

  1. Should I Buy a Standard Model of a Brand Name?

When it comes to buying pre-owned mixers, brand plays an important role. Buying standard models of branded and reputed manufacturers of used mixers can assure you about its quality. In addition to this, you will find it very easy to get spares and servicing for a standard internal mixer models in case of future repairs.

On the other hand, if you go for non-branded or non-standard rubber internal mixer, buying and maintaining the spares can prove a difficult task.

Kobelco Make Mixers

Kobelco Make Mixers – Image From Web

  1. Should I get everything on paper?

I think this is a very important step whether you are buying new or used rubber machinery.

You should get everything on record, from the first formal quotation, the details of the rubber machinery, the accompanying accessories, delivery terms, mode of payment, extent of buyer liability, seller liability, etc. It could be an exhaustive document or a simple set of key clauses basis your comfort – either way they are critical to your purchase. (You may wish to explore the rubber machinery purchase and sale agreement here. Preview – Rubber Machinery Purchase and Sale Agreement Template  To buy the full agreement kindly email me directly.)

Once you have answered these questions satisfactorily and determined which factors are most important in your current purchase decision, you can confidently negotiate and purchase a pre-owned mixer that will meet your rubber compounding requirements.

Summarizing, when buying used rubber internal mixer, you need to conduct a proactive due-diligence; identify and partner the apt seller for your needs, and have proper documentation in place. When you make an informed used or pre-owned internal mixer purchase, you avoid buyer’s remorse. 

Happy Buying!


If you liked this article, please do share with your colleagues, customers and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


4 Comments

Top 15 Skills Required For An Internal Mixer (or Kneader) Operator

Rubber Mixing is a capital and energy intensive operation. And mixing machinery are the mother equipment. This could be an Internal Mixer (Banbury or Intermix) or Rubber Dispersion Kneader depending on the size of your organization and/or products manufactured.

Hence, the cost of errors or omissions are very high when compounding a batch in a mixer. You need a skilled operator. Ever pondered on the skills that make a mixer operator successful?

Internal Mixer Operator

Here is the list of top 15 skills for an successful batch mixer (or kneader) operator. (Updated on 23rd Dec 2015: Flip through this post in our digital edition and download here)

  1. Control of Operations – Your mixer operator should be able to adjust ram pressure, control the mixing process, set parameters and ensure its completion as per SOP (temperature or time or energy as programmed/specified).
  2. Monitoring Operations – The most important skill of your operator should be to have a keen eye for watching gauges, dials, or other indicators in the control panel or HMI to make sure the mixer is working properly. He has to ensure that the mixer is kept clean, safety features are functional,  upstream and downstream equipment along with all accessories (like cooling water, hydraulic/pneumatic system, temperature control unit (TCU), lubrication system, etc) are ready
  3. Active Listening – Your operator should be a skilled listener. He should actively listen to the sounds of the mixer and its motor during a mixing cycle; pay full attention to what his supervisor (or you) or his colleagues on the mixing room safety are saying, take time to understand the points being made, and ask relevant questions.
  4. Speaking – Your operator should be able to talk to you (or his supervisor) to convey information effectively be it to report data/problems/incidents as applicable in a timely manner
  5. Reading Comprehension – An operating and maintenance manual is normally supplied together with the rubber mixer. This is a crucial document. Again your compounding process may involve specific work related instructions or SOP. Or there could be a training manual in some instances. Your operator should be able to understand written sentences and paragraphs in these documents. Hence, reading skills is very important for a successful operator. It is not necessary (while it is preferred) that they read English, because you could translate these documents to your operator’s local language for ease of reading.
  6. Troubleshooting, Judgment and Decision Making – Your operator is the first point of contact with your mixer in operation. Hence, he should have the experience or knowledge on mixers to determine/read the causes of any operating errors when they occur, judge the gravity of the error and also decide what to do about it – whether to reset the mixer, or escalate to supervisor or raise a service visit request of the manufacturer’s engineer.
  7. Critical Thinking – Operating a rubber mixer requires critical thinking skills because your operator should use logic and reasoning to identify alternative solutions, conclusions or approaches to problems he faces while mixer is in operation.
  8. Quality Control Analysis – Your operator should have basic skills on quality control with an outlook to meet your set mix quality parameters in every batch. This may involve need for appropriate fine tuning like helping you fix the batch weight, or sending the sample of specified compound/ batch in specified form to lab for testing.
  9. Social Perceptiveness – Emotions could run high in the rubber mixing room. Your operator should display “awareness” of others’ reactions and understanding of why they react as they do in a particular circumstance.
  10. Repairing – Your mixer operator should be able to use the required tools to both repair and assist repair of mixers when needed in the most urgent manner.
  11. Time Management – Your operator should manage his own time and display sensitivity to the time of other co-workers involved in the mixing room.
  12. Mixer Maintenance – Performing routine maintenance on mixer and determining when and what kind of maintenance is needed is an important skill that your operator should posses.
  13. Active Learning – Your operator should display active learning skills. This is because, mixers get upgraded, automation and new controls might get introduced or new methods of mixing could be introduced all of which he might have to learn or get trained in.
  14. Writing – If you could get an operator who could communicate effectively in writing to you (or his supervisor) or to other departments, then I would say you have a great asset.
  15. Complex Problem Solving – Your operator should develop skills to identify and solve complex problems when they occur at site and support maintenance department effectively over a period of time. This reduces the downtime of your mixer.

Do you agree the above listed 15 skills, required for an Internal Mixer or Kneader Operator, are comprehensive? Let us know.


If you liked this article, please do not forget to share with your colleagues and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


20 Comments

7 Quick Tips About Batch Weight Calculation For An Internal Mixer

Internal mixer is a standard rubber machinery for volume mixing in both tire industry and non-tire rubber industry.

When you use one, your most elementary requirement is to calculate the batch weight for your respective mixer model. Because when mixing rubber compounds, you should understand that different compounds based on the same polymer might require different batch weights. And different polymers will almost certainly require different batch weights.

Bainite Make Intermeshing Mixer

Image Courtesy: Bainite Machines Pvt Ltd

Here’s 7 quick tips for you to fix the batch weight for your rubber mixing. (Updated on 23rd Dec 2015: Flip through this post in our digital edition and download here)

1) Theoretical Equation

The thumb rule is the theoretical equation

W= NV x SG x FF

where W – Batch Wt [kg]; NV – Net Mixer Volume [dm³]; SG – Specific Gravity (density) of the mixed batch [kg/dm³]; and FF= Fill Factor.

Generally, most mixer manufacturers share this calculation with you. But remember, what they give you is only a theoretical number. This is only a starting or reference point and you need to arrive at your own mixing batch weight for your compound recipes, following some of the other tips stated below.

2) Net Mixer Volume (NV)

Since Internal mixer has a fixed volume mixing chamber, knowledge of the net volume (in liters) is required. This can be obtained from the manufacturer directly or in some cases from their literature for their various models.

When the mixer is used regularly (or if you have procured a used-mixer) the effective volume increases due to wear on the rotors and mixing chamber. If not compensated for this inside wear, your batch volume will be effectively too small leading to insufficient ram pressure on the compound, poor dispersion and longer mixing times. Annual measurements of chamber are recommended to update your batch weight correctly.

Excessively worn out mixers will have to be rebuilt or reconditioned (Read our posts on mixer rebuilding – Top 25 Things You Should Know to Discuss with Mixer Rebuilder and 17 Essential Questions to Select the Right Rebuilder for your Internal Mixer)

3) Guesstimate the Fill Factor (FF)

If you have a Tangential Mixer (aka Banbury) , then your FF can range between 0.70 and 0.85. And for a Intermeshing Mixer (aka Intermix), your FF can range between 0.62 and 0.70.

Knowledge of the fill factor is necessary because an under-filled mixing chamber results in the ram bottoming out too soon. This reduces the pressure on the rubber stock and increases the mixing time. An over-filled chamber leads to unmixed ingredients staying in the mixer throat. This creates a mess under the mixer when the batch is dumped.

For example, NR-rich compounds in an intermeshing mixer has a fill factor of around 0.65 while for the same compound in a two-wing tangential mixer, it is about 0.75. This compound will have an increased FF of about 0.78 for a tangential mixer with four-wing rotors. Each polymer also has its ideal fill factor and that varies again with Mooney viscosity and filler system.

Fill factor of a mixer depends on the age of the machine, wear and tear of the rotors and chamber, the rotor type, rotor speed, rotor friction ratio, nature of elastomer, ratio of elastomers/ fillers, mixing sequence, kind of polymers, fillers and individual SG of the ingredients in your recipe, viscosity of ingredients, etc. Generally, the lower the compound viscosity, the fill factor is higher.

Hence, we initially guesstimate the FF before stabilizing on the figure later on through actual trials.

4) Estimate the Specific Gravity (SG) of your Compound

You can estimate the density of your compound by multiplying the quantity of each ingredient with its individual density (you can get this figure in any compounding handbook or ingredient supplier literature). Sum up your individual results and then divide this number by the total sum (usually phr). The result will give you the estimated density of the compound. (Mathematically, this is the weighted average calculation).

For example, lets consider a sample recipe (I got this recipe from a web search) as below:

Recipe Ingredients  Volume Density Volume x Density
      (L) kg/L kg (or PHR)
SMR 10 106.4 0.94 100.0
Zinc Oxide 1.8 5.55 10.0
Stearic Acid 2.2 0.92 2.0
N550 Carbon Black 27.8 1.8 50.0
Oil 10.9 0.92 10.0
Antioxidant TMQ 1.9 1.08 2.1
Antiozonant DPPD 1.6 1.22 2.0
Sulphur 0.1 2.07 0.2
TBBS 1.6 1.29 2.1
TMTD 0.7 1.35 0.9
Total 155   179.3
Compound SG  (179.3/155) 1.16

Calculating, the SG of this Compound mix is arrived at 1.16 (=179.3/155).

5) Know your Internal Mixer

Knowing your internal mixer – its capabilities, design features like rotor (tangential or intermeshing), ram (pneumatic with dedicated air supply at the plant or hydraulic), variable speed capabilities of the motor, SCADA, PLC, automation and control features, etc.

Rotor speeds are critical because you can use higher speeds at the initial mix and then reduce the rotor speed to allow the batch to “knead” well.  This will allow you to get both your dispersion and distribution tasks of mixing right. Hence, when selecting a mixer explore variable speed drives since it give you advantage in your mixing process.

(If you are planning a new purchase, read and download our Questionnaire for Internal Mixer Selection)

Similarly, think of ram pressure.  If your ram pressure is too high you will cause excessive heat build up and poor flow of ingredients across the rotor tips. In intermeshing mixers, this will also cause internal pressure within the mixing chamber and might cause mixer failure. If ram pressure is too low, then you will not get the ingredients down into the rotors and this will result in poor mixing. (Read more about Hydraulic Ram here)

Banbury Mixer

Image of HF Mixer

6) Watch the Ram Action

After the above reference calculations are done and mixing initiated; watch the ram action during the mix. The ram should start high, move up and down about an inch or two and bottom out when mixing is complete. Good mixing practice dictates that when the ram bottoms out about 30 – 45 seconds before the batch is dumped, you can be assured that the chamber is properly filled and mixed compounds will be of high quality.

You need to observe the position of the ram by watching the tell-tail rod attached to the top of the ram. Hence, this requires more of practice and experience than theoretical knowledge.

If you have a good mixing system with controls and feedback features, you can correlate the position of the ram with the current and rise in temperature – these are important to get an optimized batch size and high quality of mix.

7) Optimize Your Mix Batch Size (…Do Not Maximize)

The key to successful mixing is optimizing your mix batch size, and not maximizing. And good mixing is a form of art.

Most mixer users want to get the most out of their internal mixer (quite natural!) and they test its capabilities to the full. Finally, when they get poor mixing, they wonder if they have done the right investment! 

If you try to take your batch size to the upper limits of the mixer’s “capacity” as specified in the manufacturer’s manual (that is usually a peak magical figure) and you have raw material variations such as particle size or bulk density changes in your fillers, this can lead to poor mixing (dispersion and distribution of ingredients).

The right batch size will be smaller, but your internal mixer throughput is increased by shorter mixing time and thus more batches in the same period. Thus, optimizing your batch weight will allow you to get consistent batch quality and repeatability that are of paramount importance to your (or your customers’) downstream processes.

The key factors that will influence your mixing optimization are compound formulation, ram pressure, mix procedure, mixing speed and rotor design.

Each mixer is different and it would be very difficult to determine the optimized fill factor without actually conducting several mixing trials. Experience is a key to good mixing.

Summarizing, when mixing rubber compounds, different compounds require different batch weights. These 7 tips will help you calculate the optimized batch weight for your compounding recipes on an internal mixer quicker.


If you liked this article, please do not forget to share with your colleagues and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


3 Comments

9 Things About Tandem Technology Your Boss Wants To Know In Rubber Mixing

Dr Julius Peter, then Chief Technical Officer at Continental AG patented his idea of Tandem Mixing Technology in 1989. His colleague, G. Weckerle, manager at Continental Technical Rubber promoted this technology at his factory in Northeim, Germany on K2A, K4, K5 and K7 type of mixers.

Francis Shaw & Co had sole world rights for supply of the intermeshing type tandem mixers. Today, HF Mixing Group (Harburg-Freudenberger Maschinenbau GmbH) are owners of tandem mixing technology by virtue of their acquisitions in the rubber machinery world.

(Updated on 23rd Dec 2015: Flip through this post in our digital edition and download here)

Here are 9 key things about tandem technology in rubber mixing you should know to impress your boss.

  1. Tandem technology separates the two main tasks in your rubber mixing process viz. dispersion and distribution. Dispersion means breaking down of your solid materials such as the fillers. Distribution involves achieving homogeneity within your rubber mix compound with its different chemicals added. The temperature profile which is absolutely essential for inducing chemical reactions during your rubber mixing process can be better controlled when these two stages are separated.
  2. In Tandem technology you interconnect two “mixers” in series, a ram type mixer on top of aramless mixer. Each machinery is optimised to perform one rubber mixing task. Ram type mixer does dispersion well whileramless tandem mixer does the task of distribution.

    HF Tandem Mixer

    HF Tandem Mixer

  3. Your masterbatch produced in the primary ram mixer is transferred without intermediate storage to the ramless tandem mixer below. Here your batch is cooled and finals mixed. At the same time a new masterbatch is prepared in ram mixer above. The upper mixer with ram is preferably (but not necessarily) intermeshing type. As your masterbatch mixing does not involve the addition of curatives or accelerators and is essentially a heating operation, the mixing cycle may be carried out rapidly without any need to cool your mixer before the next mixing cycle.
  4. Between the two mixers is a discharge flap and chute which would be closed at all times except when the lower tandem mixer receives the masterbatch dump from above.
  5. The mixer below must be intermeshing type to enable self-feed without pressure and work without a top ram. The finals rubber mixing function is usually a shorter process than the masterbatch stage. This means that the tandem mixer has an idle time after the discharge and before receiving the next hot masterbatch. This idle period with the discharge door open allows the tandem mixer to cool.
  6. The final mix compound is then dumped into a two-roll mill or a dump extruder and processed in the normal way.
  7. When the two tasks of dispersion and distribution are separated, your compound weight is relatively smaller in the larger lower machine. Hence, you can operate this ramless mixer at a higher speed. This improves the quality of your mix because your compound is moved around the mixing chamber more number of times.
  8. Excellent cooling water circulation to the mixers is a must in tandem mixing technology.
  9. HF Mixing Group expert, Dr Harald Keuter, emphasize that a Tandem mixer improves your throughput rate by up to 25 per cent when compounding with carbon black compounds and can rise up to 100 per cent with silica compounds. Hence you can cut costs and increase output with this technology. Depending on your choice of mixing line, say for a mixing room with five tandem mixing lines and production of approx. 100,000 tonnes of rubber compound annually, he says you save up to one million euros per year. (….And that’s lot of money!!)

The population of tandem mixers is higher in the tire industry while its economy of operations is tempting the non-tire rubber industry as well.

Do you plan to reduce the mixing stages for your rubber compound (Read on Single-Stage or Two-Stage Mixing here) using tandem technology? Let us know.


If you liked this article, please do not forget to share with your colleagues and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


2 Comments

Top 25 Things You Should Know to Discuss with Mixer Rebuilder

The first step to rebuilding your internal mixer is to select the right rebuilder. (Check out 17 essential questions to select the right rebuilder for your internal mixer). After, the mixer is disassembled and cleaned, a joint inspection (between the rebuilder and you/your company representative) should be conducted at work site.

During this joint inspection, you will need to take or approve decisions on different critical components of the mixer. Some of these could be rebuilt, few repaired, very few reused as it is and some will have to be replaced fully. If you choose your options wisely here, you avoid being shortchanged on the final scope of work and get the best Return on your Investment (ROI)….after all you would not want to pay for something that you can reuse!

Internal Mixer

Internal Mixer: An image from the web

So what are the 25 key things you should prepare for discussions on rebuilding your internal mixer? Lets list them.

  1. Chamber (Drilled) SidesReuse or Replace. If the bore is out of tolerance and/or surface worn out, this component cannot be reused.
  2. Rotors – Reuse or Replace. Some rotors can be reused by rebuilding the profile if they are not too old or not excessively worn out of shape.
  3. Rotor End (RE) PlatesReplace. Rarely can this component be rebuilt.
  4. End Frames – Reuse. In most of the mixers, this component can be reused unless the end frame casting has cracked.
  5. Bearings – Reuse or Replace. Rebuilders will recommend replacement on a cautionary note, however exceptions are possible if the bearings are new or not damaged during disassembly.
  6. Dust Stop Assemblies – Replace. Always
  7. Oil injector – Replace. Always
  8. Couplings – Reuse. Because these are long-life components.
  9. Door SupportReuse. In most of the mixers, this component can be reused unless there is a crack.
  10. Drop Door Shaft –  Reuse. In most of the mixers, this component can be reused unless excessively worn out.
  11. Drop Door (Door Top) – Replace. This component usually exhibits higher wear and tear. Hence, unless it is new, usually recommended for replacement.
  12. Latch Assembly – Reuse. In most of the mixers, this component can be reused as it is.
  13. Linear Actuators – Reuse. Rebuild and service them after dismantling.
  14. Throat Plates – Replace. This component wears out due to constant contact with floating weight.
  15. Floating Weight (Ram) – Reuse or Replace. Depending on the condition.
  16. Hopper – Reuse or Replace. Rebuilders will recommend replacement together with mixer body. Depending on the condition, this can be examined for reuse.
  17. Hopper Front, Rear & Side Plates – Reuse.
  18. Hopper DoorReplace. Always.
  19. Piston Rod, Plates & Cup Seals – Replace. Always.
  20. Grease & Oil Lube Assemblies – Replace. Always.
  21. Hydraulic Cylinders – Reuse. Change the seals.
  22. Hardeners & Fasteners – Replace. Always.
  23. Seals & Bushes – Replace. Always.
  24. Thermocouples – Replace. Always
  25. Rotary Joints – Replace. Always

Initial budget estimates notwithstanding, these decisions on “Reuse or Repair” that you take on the components (after disassembly and joint inspection) impact the final cost of mixer rebuilding. The cost could either increase or decrease depending on the trade-offs you are willing to take. If you have chosen a good rebuilder, he will guide you towards an informed decision – finely balancing the cost and the optimum restoration of your mixer.

Have you rebuilt your internal mixer? If so let us know your experience.


If you liked this article, please do not forget to share with your colleagues and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


4 Comments

17 Essential Questions to Select the Right Rebuilder for your Internal Mixer

Rebuilding an internal mixer can be less expensive than purchasing a new machinery. Your production downtime can also be reduced by proper planning because of faster turnaround times on rebuilds.

Depending on the condition of the internal mixer; they could be rebuilt, remanufactured or upgraded.

Internal Mixer

An Internal Mixer: Image from the Web

Rebuilding a mixer requires expertise in mechanical aspects and knowledge of its functioning. Rebuilders’ knowledge of hydraulic, lubrication, pneumatic, electrical, control, and cooling systems are equally important if you plan to upgrade.The rebuilding process will require your mixer (and its components) to be disassembled, cleaned, inspected, and repaired (or replaced as is required).

Hence, an expert rebuilder follows these steps.

  • Disassembly, cleaning, and inspection.
  • Estimation on the scope of rebuild and guidance to upgrade the mixer components (in case of old designs and brands) to improve performance.
  • Rebuilding or remanufacturing mixer components to original dimensions, clearances and tolerances.
  • Ordering of the required electrical, control, hydraulic, lubrication, pneumatic, and cooling system parts.
  • Reassembly of the mixer and painting.
  • Documentation and manuals for installation, spares, maintenance (and operations in case of upgrading the mixer)
  • Inspection, testing and mechanical recertification.
  • Installation and Startup support at site.
  • After-market service and spares support.

There are a significant number of details within each of the steps outlined above, that needs extensive expertise. Hence, I suggest that you ask yourself the following 17 questions (that needs a “yes” answer) to decide on your choice of a mixer rebuilder (reputed companies recognize the importance of these questions and will provide you full details. Most would even display documentary evidence during your discussions).

  1. Is the company well-established in the industry?
  2. Does the company have drawings to rebuild and remanufacture your mixer to specifications?
  3. Does the company have design capabilities to upgrade, modify or custom-design your mixer components to new/improved specifications?
  4. Can the company service your mixer?
  5. Does the company have competent personnel for field service?
  6. Can the company provide installation support?
  7. Does the company have the required engineering infrastructure to remanufacture your mixer components? What are its manufacturing capabilities?
  8. Can the company extend service and spares support throughout the life of your mixer?
  9. Does the company have the required testing (like pressure, steam, hydrostatic, ultrasonic, etc) facilities for your mixer and its components?
  10. Does the company supply installation and parts manuals?
  11. Can the company ensure final mixer dimensions match the existing dimensions available at your site?
  12. Does the company provide you verification of inspection reports, test certifications of critical components?
  13. Are they confident of their internal quality processes and systems?
  14. Do they agree for a third-party inspector for final inspection and validation?
  15. How does the company go about determining the scope of rebuild?
  16. Does the company display transparency when sharing – which components are rebuilt? Which are remanufactured? which are upgraded designs?, etc.
  17. Does the company have the expertise or resourcefulness to guide you on electrical, control, hydraulic, lubrication, pneumatic, and cooling systems?

Plan a visit to research and evaluate your prospective companies well. Because a mixer rebuild can cost your pocket at least 50% or more of a new machinery price depending on its condition. Select the right rebuilder to restore your internal mixer to its original capacity, maintain them well (Recommended Maintenance Schedule For Internal Mixer) for longer life and thus maximise your ROI.


If you liked this article, please do not forget to share with your colleagues and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.