Rubber & Tyre Machinery World

Info on Equipment And Suppliers


The Biggest Problem with Heat Transfer Efficiency in Rubber Machinery (And How You Can Fix It)

Rubber processing has a bizarre energy pattern, when seen from a layman’s perspective. Because you add heat into your process and then you cool down!

Heat addition and removal is repeated in each of your subsequent stages as well.

When you process rubber, energy is consumed across the value chain – right from transport of raw rubber, to the various processing operations (be it rubber mixing, rubber extrusion, rubber calendering, moulding etc) to convert into your suitable product and then transportation of your product.

Energy Uses in Rubber Processing

Source: Tangram

This implies that you need to cool down your rubber processing machinery regularly, which simultaneously involves heat exchange from a hot medium to a cooler medium.

And the most common medium to cool is water.

But where there’s water, you will face water-related problems caused by its mineral deposits. These deposits could give you varying degrees of water-related problems that affect your operating efficiencies and/or even leading to more costly equipment downtime issues.

This could be in your Rubber Machinery like Mixer, Mixing Mill Rolls, Calender Rolls, Press, Extruder, Heat Exchangers, Moulds, and factory equipment like Boilers, Chillers, Compressors, and TCU‘s or other Ancillary Units, etc.

You would notice that the mineral deposits accumulate quickly regardless of screens or treatment actions adopted. Even a thin coating of water scale will act to insulate the water system’s surface and retard the transfer of heat.

Hence, scaling is the biggest problem affecting the heat transfer efficiency in rubber machinery.

To increase heat transfer efficiency, lower maintenance cost, conserve overall energy consumption and thus enhance the usable life of your machinery, removing scales in all your water-cooled or water-heated rubber and tyre equipment is very important.

In a simple rubber machinery like the mixing mill, the presence of scales on rolls leads to localized hot spots affecting your mixing quality. In the case of boilers, scales can be very damaging leading to even boiler rupture. When water scale, lime and rust deposits accumulate on the water side of chambers, rotors and the drop door of the Mixer, it causes temperature of your rubber stock to rise and gradually lead to a loss in production.

Different machinery has different safe and effective method to remove scales. Recently, I was shown an instruction sheet, from one of the descalers (RYDLYME), on the process to descale a rubber mixer that I found interesting.

Here’s the process reproduced. I hope you too find it informative.

How To Clean Your Rubber Mixer

Image From RYDLYME

  1. Take mixer out of service.
  2. Close water supply valve at header as shown in the sketch above.
  3. Drain all water from all sections of mixer.
  4. Connect Descaling Solution pump discharge hose to water header. Header usually supplies all circuits.
  5. Connect return hoses to drain lines from all circuits and place into the Descaling Solution receiver.
  6. Close water supply valves to gate and jacket circuits.
  7. Start pump and pump the descaling solution into rotors to purge the water from this circuit to sewer. When the descaling solution begins to discharge from this hose, return to the receiver.
  8. Open water supply valve to gate and maintain Descaling Solution circulation through this circuit.
  9. Open water supply valve to jacket and maintain Descaling Solution circulation through this circuit.
  10. If any circuit is NOT flowing properly, restrict Descaling Solution flow in other circuits until flow returns to normal in this circuit.
  11. Circulate a total of 120 Litres of Descaling Solution through all circuits of mixer until clean. This will require approximately four (4) hours pumping time.
  12. It is suggested to periodically rotate the rotors during Descaling Solution cleaning to assure that the Descaling Solution is in contact with all of the lobes of the rotor.
  13. Upon completion of cleaning, flush all Descaling Solution from all circuits with fresh water.
  14. Disconnect the Descaling Solution pump and all hoses. The mixer is now ready to be returned to service.
  15. Periodic descaling will keep the temperatures of the mixer within acceptable limits, assuring you a better product and minimize burnt or improperly mixed stock.
  16. Clean out the Descaling Solution System and store for future use.

Summarizing, scaling is the biggest problem with heat transfer efficiency in your rubber machinery. Descaling or cleaning the scales helps you fix this issue. Hence incorporating descaling solutions into your preventive maintenance program is recommended to keep your equipment running effectively and economically.

Do you agree?

If you liked this article, please do share with your colleagues, customers and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.

Do you have any blog suggestions? Let us know on

1 Comment

Why We Love Cryogenic Deflashing Machine (And You Should, Too!)

Moulding is a common method to produce rubber goods today. And if you are a rubber moulder; I bet that, like any other manufacturer, you are constantly exploring technology for gains in productivity. And one area where you quickly stand to gain is in deflashing.

Your moulded rubber parts must undergo a finishing process to remove excess rubber flash before they are cleared for final inspection and packing. And this process is termed deflashing.

Most moulded rubber goods producers are currently deflashing manually. This means dozens of workers, seated at small work stations, would take each part and trim the excess rubber off with scissors, knives or grinders.

Obviously, this hand deflashing has several drawbacks. The quality of work done by hand is often inconsistent. This apart, as labour wages rise, your hand deflashing becomes expensive and unsustainable.

This is where automation of deflashing process assumes importance and Why We Love Cryogenic Deflashing Machine.

If you are manufacturing any of these – O-rings & gaskets, catheters and other in-vitro medical items, Insulators and other electric / electronic items, Valve stems, washers and fittings, Tubes and flexible boots, or Face masks & goggles; you too should love Cryogenic Deflashing as a process to remove flash from your moulded rubber parts. Here’s why.

Cryogenic Deflashing Machine

Image from Web


Deflashing machine also known as deburring machine. Though this cryogenic deflashing technology is in existence for over 50 years, its ‘practical introduction’ happened about 20 years back. Its popularity is on the rise in last 15 years.

This process uses liquid nitrogen, high-speed rotation and media (shot blast) in varying combinations to remove the flash in a highly precise, economical and practical manner.

There are two basic styles of cryogenic deflashing machine – basket and belt. The basket style was designed to process small parts and offers 100% parts containment. The belt style was designed for larger/heavier parts which require more room to tumble and a stronger rotation system.


A typical cryogenic deflashing machine consists of a stainless steel cabinet insulated with dense polyurethane foam. Located inside the cabinet are the blast chamber, the liquid nitrogen nozzle, and the opening for the throw wheel.

Plastic shots ranging size from 0.15 to 1.4 mm are deployed. These shots do not cause rust or part contamination. All major components of the machine (motors, bearings, etc.) are located outside of the cabinet and isolated from the temperature variations and moisture.

These are maintenance-friendly design and also reduce component failure in your machine.

In your machine, there must be room within the blasting chamber for the parts to tumble because it is the tumbling action that exposes the parts to both the Nitrogen and the media stream. The actual size of the chamber should be at least twice the size of your load.

Configuration of a Deflashing Machine - Samstal

Image from Web

Manufacturers of cryogenic deflashing machines offers you options such as programmable controllers with numerous deflashing “recipes” for automatic operation, networking capabilities, bar coding abilities, message centers, reporting, historical data etc.


Your moulded parts are placed in a perforated stainless steel basket and inserted into a highly insulated blast chamber. Liquid nitrogen is injected into this chamber in which the basket with your moulded rubber parts is mechanically rotated to expose all parts to the blast media.

Liquid nitrogen lowers the temperature (some cases up to -140°C) while freezing the rubber to make it brittle. The physical properties of your moulded rubber parts are not affected during the deflashing process.

A unique high-speed (up to 8,000 rpm) impeller directs and throws plastic shots at the tumbling parts into the rotating basket. Travelling at high-speed, these small pellets cleanly trim off the brittle flash leaving a high quality, flash less molding. The machine separates reusable media from debris (flash and dust).

In some instances, cryogenic deflashing does not utilize a blasting action, relying instead only on the tumbling of the parts to remove flash on the outer edges.

Parts that have thin flash can be quickly and thoroughly cryogenic deflashed. Cryogenic Deflashing process is exceptionally good at removing the inner dimensional and complex flash in your products that cannot be removed by any other method.

The average cycle time can range from 1.5 – 10 minutes depending on the number of parts per batch (which is, dependent on the size of your moulded parts); flash thickness; wheel speed; and size of media used.

Cryogenic Deflashing Machine - Barwell

Click on the Image to Watch Video (11:29 Mins Long)

To consistently get a quality-finished-part, you have to consistently put in a quality unfinished-part. This means,

  • Flash: Make the flash of your moulded product as thin as possible (<0.3mm), with as good a flash base as possible, or, in the case where sealing surfaces are involved, try to move the flash away from the critical areas.
  • Overflows should, if they are necessary for your molding process, be moved as far away from the part as possible.
  • Tear trim design was developed to eliminate the cryogenic deflashing operation. The overflow is placed extremely close to the part so that, when this overflow is removed by hand, no flash remains. (If there’s tear trim…Keep atleast 0.5mm from parts)
  • Parting Lines: Your moulded parts need a clear, consistent demarcation of flash. For best results, the parting line should not exceed 0.127 mm thickness.

It is important you understand that no cryogenic deflashing unit will eliminate your molding problems.


While liquid nitrogen consumption could be a concern for some manufacturers, Cryogenic deflashing provides you various advantages over manual deflashing and other traditional deflashing methods.

  • Greater Productivity. Cryogenic deflashing trims parts in seconds.
  • Better Product Quality. The process maintains part integrity and critical tolerances.
  • Since it is a batch process, the price per piece is far less as many more parts can be processed in a given amount of time.
  • The process offers consistent results from part to part.
  • Cryogenic deflashing extends mold life. Rather than replace or repair a mold (which typically involves downtime and high cost), the parts can be deflashed. This is typical of parts molded at the end of their product lifetime.
  • Simple Operation. Highly automated, today’s cryogenic deflashing equipment is easy to use.
  • The process is computer controlled, therefore removing the human operator variable from the process.
  • Cryogenic deflashing is non-abrasive.
  • The cost per part is generally well below any alternative technique.
  • Environmentally Sound. The nitrogen cryogen can be recycled or vented safely to the atmosphere. In addition, cryogenic deflashing systems are typically enclosed to minimize noise.

Lastly, at a price ranging from US $45,000 to $130,000 (depending on your country of procurement and features), the new generation cryogenic deflashing units has a wide appeal to moulders of different volume levels and product mixes.

Do you agree? 

If you liked this article, please do share with your colleagues, customers and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


Tire Production Simplified In A Flow Chart

My earlier post on Tyre Building Machine – 5 Amazing Videos You Must See was well received by the readers and they found it informative.

I have in earlier posts covered rubber machinery like Bale Cutter, Mixer, Mixing Mill, Batch-Off, Extruder, Tire Buffer, etc. However, its intriguing to see where all these equipment (along with the other machinery) goes into tire production.

This flow chart simplifies tire production overview and helps you visualize the various equipment that we discuss on this portal Rubber Machinery World in the right perspective.


The source of above flow chart is from Nell Achieve Website.

And just in case, you thought even for a microsecond ‘Is this all to tyre manufacturing?’, I correct you here.

The tire production process is a very meticulous and complex  affair. Click here to download the infographic from Giti that explains their tire production concisely.

I hope you found this post informative. Let me know.

If you liked this article, please do not forget to share with your colleagues, customers and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.


How To Select Your Rubber And Tyre Machinery? Insightful Advices From 6 CEO’s

“How To Select Your Rubber And Tyre Machinery?”

This subject question could have volumes written in theory. But today we focus on what the CEO’s advise, distilled down from their experience, expertise, and wisdom.

Your equipment supplier ecosystem includes New Manufacturers, Rebuilders, OEM Suppliers, Pre-Owned Machinery Suppliers and Agent representatives.

So I asked all the CEO’s the same question to give you a true perspective.

“What would you advice on machinery selection to buyers and users of rubber and tire equipment?”

The different views they offered here are not only insightful, they are pertinent, prudent and practical.

Read on in our Special Supplement here….

This special supplement is one of our efforts to give you useful knowledge on-the-go in a concise and timely manner. This topic based micro-editions is in addition to our other initiatives like ‘Know Your Supplier’ that provides you information on the machinery supplier ecosystem.

Watch Video Version of this supplement on YouTube or Download Full PDF Here.

If you liked this post, please share with your customers, colleagues and friends. And If you would like to be informed of our posts regularly, please register with us for free updates today.

If you are an equipment supplier and would like your organization to be promoted on Rubber Machinery World, please see the opportunities on Partner Me or Contact Me at for your customized offering.


Why You Should Spend More Time Thinking About Gearbox for Rubber Extruders?

As a rubber machinery salesman, I have sold several single screw extruders in both extrusion categories – hot feed and cold feed.  In each of my sale, the buyers had strong views and apprehensions on screw and barrel life, throughput and strained production capabilities, extrudate temperature, extrudate appearance, die head design and performance, etc (all of which I acknowledge are really important).

Strangely, the topic of gearbox usually concluded in few questions – “Which brands of gearbox do you offer and what is the SF?” or “If I select XYZ over ABC, will the delivery lead time of my extruder change?” or “Should I call you or the gearbox vendor for service during warranty period of gearbox?”

I do not recall a single discussion where the buyer asked me about gearbox technical details. Nor do I remember the buyer asking me to arrange for a separate technical discussion with extruder gearbox manufacturer to clarify their requirements.

Why do I think this aspect of joint discussion (if any) was relevant for me as a extruder supplier? Because the assembly of a rubber extruder “practically commences” only after the gearbox is ready at the extruder builder’s shop-floor. Unlike an internal mixer or a mixing mill or calender, buyers would not opt for buying the gearbox and main machinery separately. To any reputed machinery manufacturer, there is no bigger pet peeve than a customer buying different components from different vendors trying to save pennies. (But I digress here… do read Prof. Andreas Limper interview).

Extruder Gearbox

Image from Web

And yes, a gearbox is also the single-most-expensive-component on this popular rubber machinery.

I safely presume that this single argument reinforces the relevance of this post here – Why You Should Spend More Time Thinking about Gearbox for Rubber Extruders?

First things first – Why do your single screw extruders need gearboxes?

Extruder manufacturers prefer 1800/1500 RPM or 1200/1000 RPM motors (depending on your country of use) because they are economical, readily available and compact in size to mount on your extruder base. However, most rubber extruder screws during production run in the speed range of 4 rpm to 40 rpm.

Hence, the role of a gearbox or gear reducer here is to reduce the drive motor’s speed and, in turn, multiply the available torque from the motor in order to produce sufficient power to mix and push out your rubber compound.

Plain Cold Feed Extruder

A Representative Image

As an individual and independent component, the key specification that defines the capacity and durability of your extruder gearbox is the power (HP/kW) rating along with its service factor (SF). Single screw extruder gearboxes are normally rated for power (HP/kW) or torque at a specific rpm based on common calculations and standards. This uniform standard allows you to compare gearboxes from different manufacturers.

Your extruder manufacturers follow these guidelines and select a model for different service factors and applications. A key question you should ask is whether, the SF considered by your manufacturer is optimal for your extrusion application or not.

Knowledge of AGMA (American Gear Manufacturers Association) recommendation will certainly help you to discuss better with extruder manufacturers, but experienced gearbox manufacturers can guide you even better. I have witnessed buyers in Asia been taken for a ride for their ignorance and offered lower specification gearboxes on their extruders to compete on cost.

When you compare gearboxes, always evaluate on calculated power. The formula for calculated power of a gearbox is:

                        Calculated Power = Quoted Power X Service Factor.

Typically, single screw rubber extruder gearbox has service factors of 1.5 or 1.75 for optimal operating capacity. For example, a 6 inch pin type cold feed extruder gearbox with a calculated rating of 367.5 kW would have a quoted rating of 210 kW with a 1.75 service factor.

The overall rating of a gearbox is based on the ratings of all its individual components. This includes the gear teeth design, gear hardness, shaft dimensions, bearing selection and sizes, housing design (thickness & rigidity), and thermal considerations. All these considerations are to ensure that your gearbox has sufficient support and capacity to effectively transmit the motor torque to the screw without significant distortion or failure.

Gearbox Internals

Image from Web

Within the gearbox, the most important component (and most expensive) is it’s thrust bearing. You evaluate a thrust bearing based on its type and life (B-10 or L-10 rating).

The B-10 Life (sometimes called L-10 Life) of the thrust bearing is based on an engineering calculation that estimates the number of hours of operation at which 10% of the bearings are likely to fail. Additional rating adjustment factors are to be applied to the basic B-10 life based on application factors including how the bearing is mounted.

For example, a thrust bearing that is mounted between two radial bearings is more likely to have precise thrust bearing alignment, and will therefore have a higher rating adjustment factor.


Here are 6 other key criteria of a gearbox evaluation, which you should know

  1. Gear Design, Hardness & its Construction – Each of the individual gears that go into your gearbox assembly are rated for power or torque based on their strength and durability ratings. The calculations would be according to industry standard AGMA rating systems. Factors include the gear tooth pitch, center distance, material and hardness.
  2. Gear Shafts – The shafts must be designed to transmit the full power and torque capacity of the gears. The length and diameter of these shafts is decisive and must match the ability to transmit this torque without excessive deflection, fatigue and failure. The diameter of the input shaft must be adequate to properly support sheaves (in the case of belt driven models) or a coupling. The output shafts must be properly designed to handle the correct range of screw shanks that will be inserted. Adequate access to the drive keys is beneficial when they become worn or damaged and need to be replaced.
  3. Radial Bearings and Seals – The radial bearings support the rotational forces of the gear shafts and must be designed to handle the load forces and speeds effectively. The dynamic load capacity of these radial bearings must also be considered when evaluating the design and durability of the gearbox. Radial bearings must also be properly lubricated and sealed.
  4. Gearbox Housing Design and Construction – Cast Iron is the cost-effective material of choice for most manufacturers. Traditionally, CI gearboxes are made in two pieces, split either horizontally or vertically. Newer designs have the gearbox housing cast as one piece to reduce any potential leakages.
  5. Thrust Bearing – Thrust bearing isolates the backward forces from the screw. The larger the screw and/or the higher the back pressure, the greater the backward thrust forces. There are three basic types of thrust bearings – cylindrical, spherical and tapered.
  6. Serviceability – When you select a gearbox, you should give prime importance to the availability to affordable parts and service. It is best to select rubber extruder suppliers who purchase their gearboxes from proven and reputable manufacturers that specialize only in gearboxes for better serviceability.

Pin Type CFE

A Note of Caution:

If you plan to replace your old gearbox or comparing one, take note of below developments.

An old gearbox manufactured around through-hardened process and shaved gears technology has shafts, bearings and housings designed accordingly. Replacing new hardened gears with a higher HP capacity, does not automatically guarantee the gearbox rating to increase, if you do not replace the assembly with stronger shafts, bearings and housing.

Gear manufacturing technology today has changed and consists of carburized and ground gears. These gears are capable of delivering much more power in its smaller size. When old gear designs are constructed using the new materials and process, the power calculations yield much higher gear tooth ratings. But if the rest of the design is unchanged, and the same bearings, shafts, and housings are used, the total gearbox rating cannot simply be based on the new higher gear rating alone.

The higher torque could never be applied to the original sized input shaft without causing bending or twisting. The bearings and/or shafts would be overloaded with the higher forces, and the housing would probably not have sufficient strength to resist significant distortion. Reputed gearbox rebuilders will guide you well.

Summarizing, as an extruder buyer, you need to pay extra attention to the design and manufacture of the gearbox when evaluating and selecting a single screw extruder. 

If you liked this article, please do not forget to share with your colleagues and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.

Leave a comment

Practical Solutions On Equipment Simplified – A Know Your Supplier Special

At Rubber Machinery World, we understand your information requirements. Our effort on this portal to share authentic information to help you source your machinery wisely remains incomplete without notes on equipment suppliers from whom you source your rubber and tire equipment.

Hence, ‘Know Your Supplierseries is one of our advertorial initiatives to bring to you information on the machinery supplier ecosystem – Manufacturers, OEM Suppliers, Machine Rebuilders, Used and Pre-Owned Equipment Buyers & Suppliers, and Agents.

In Know Your Supplier editions, we cover an equipment supplier’s Competency, Capacity, Commitment, Culture, Communication, Market Presence, Technology, Solutions, amongst other details that you seek; so you know these organizations better and reach them quicker.

In this post, I introduce you to an equipment supplier based in India but wired globally. Read on to know why.

Pracsol Chemicals & Machinery is into trading of Machinery, Raw Materials and Chemicals since 2007 and is growing in reputation in machinery business. We understand from our conversation with Harish Nene, Chief Executive, that in the last 4 years they have secured landmark orders for Used Machinery from Indian Rubber and Tyre industry.

Pracsol is now fast building on this rising confidence and customer trust to extend practical equipment solutions to the industry in new machinery as well.

Flip through this Special Edition using the link –

In this conversation, Harish Nene outlines on a wide array of his business aspects right from the genesis of his company name to his experiences in rubber and tyre industry, partnership with JM Machinery USA, recent successes and new products on the anvil. Harish also informs us the unique service proposition Pracsol offers to their customers, their competence and comprehensive range of machinery offered to buyers.

I reproduce for you a few snapshots of our conversation here. (For full story, please do read and download here, this special edition of Know Your Supplier)

  • Pracsol is a strange name. What is the story behind this name?

Pracsol is derived from the words ‘Practical Solutions’. Through my experience of last 20 years in International Business, I would state that solution for a problem is possible if looked at it practically not by just following procedures.

Pracsol Logo

  • Having started in 2007 how has been your experience so far in this industry?

Business Ethics, Honesty, Transparency and Hard work is important. Customers who do business with me recognize that they can expect these from me and have helped me succeed in the rubber and tyre industry. I also have good support from my principal company. This makes things simple and gives me time to focus on delivering value to customers. From my last 7 years experience, I would opine that doing business with Private Companies is easier than doing business with Public Limited Companies.

  • Purchasing machinery is a major investment for most buyers and they would need technical inputs and customization. What level of pre-sales support do you offer?

We provide all the important technical details about the machinery with photographs. Through JM Machinery, we can aid in design and engineering from concept thru completion of the desired machine. If the customer insists on Physical Verification Report then physical verification is carried out by our principals’ engineers and a report is provided. The client has the liberty to visit for physical verification if the machines are available at our warehouse in USA.

  • Are you launching any new products?

We are targeting the rubber industry in Europe & USA to export our range of new machinery from India. We have recently bagged an order to design, manufacture and supply a NEW BATCH OFF for Europe. This is expected to be despatched by end of September 2015.


For full conversation and other details of Pracsol, access this special edition of Know Your Supplier in PDF here.

Meanwhile, here is a quick overview of industries covered by Pracsol and Harish Nene’s contacts if you would like to reach him quickly.


Know Your Supplier is an advertorial initiative of Rubber Machinery World and all information are as provided by the supplier. If you desire to know more, kindly reach out on the contact details provided or write to me stating the additional details you seek on this supplier.

And if you would like your organization to be promoted on Rubber Machinery World, please see the opportunities on Partner Me or Contact Me at for your customized offering.


The Ultimate Guide to Asset Management

If you had read my earlier post “A New Hope: Top 6 Things I Learnt At NRC 2015 Mumbai“, then you would have also read my learning from Naushad Shikalgar of J.N.Engineering – ‘Proactive Machinery Maintenance is not an expense and is an investment that has long-term benefits’.

Maintenance is important in any organization. Without proper maintenance, assets deteriorate over time reducing the quality of your output produced. It can also impact the safety of your asset or your people who operate it.

Traditionally, maintenance has been viewed as a cost center in an organization because it costs you money to hire maintenance technicians and purchase the spare parts to keep your systems running smoothly. Too often, senior executives ignore the value-add that maintenance can bring to your organization. These include:

  • A reduction in reactive maintenance costs
  • Reducing costs to restart production after a breakdown
  • Limiting production scrap
  • Costs of downtime such as missed orders and lost revenue
  • Customer perception/satisfaction
  • Improved quality of products
  • Reduced environmental impact


By definition, Asset management is a systematic process of deploying, operating, maintaining, upgrading, and disposing of assets cost-effectively.

During his talk, Naushad spoke extensively on Asset Management Strategy-Plan-Execution including the various approaches to maintenance that I found interesting and hope you too would like it when you read. Hence, I have reproduced the 34 slides (click on the picture below) here that effectively forms a comprehensive guide on asset management.

Asset Management

Click on Image

Summarizing, asset management focuses on assuring your people, parts and processes are optimized to improve asset performance. Reducing inventory, maintenance costs and the number of downtime events raises your productivity, while simultaneously driving financial performance and predictability. It also helps your employees with the right tools to make good decisions about driving your plant performance.

Do you agree? How do you look at Asset Management?

If you liked this article, please do share with your colleagues, customers and friends. And If you would like to be informed of our articles regularly, please register with us for free updates today.